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Abstract

This paper examines the dynamics and composition of household adjustment to changes in
the real price of gasoline using a panel of US households. By decomposing the demand for
gasoline into the demand for vehicle miles traveled and the demand for household
composite miles per gallon, we are able to add rich detail to the description of how
households respond to gasoline price changes. While obtaining total price elasticity esti-
mates well within the range found in the literature, we find that consumers initially respond
to a price rise with a much larger decrease in consumption than would be indicated by the
total elasticity. In addition, households respond to price changes by adjusting vehicle miles
traveled more than composite miles per gallon in the year after a price change. Q 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

For many years, researchers and policymakers have sought to understand con-
sumer response to changes in the price of gasoline so as to design effective energy
and environmental policy. The vast majority of studies that have estimated the
price elasticity of US gasoline demand have used aggregate-level data. Of the few
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studies that have used micro-level data, most have measured only short-run
adjustments and have failed to provide insight into the dynamics and composition
of the adjustment process. This paper uses 9 years of household-level panel data to
estimate longer-run elasticities of non-business gasoline demand and to analyze the
timing and nature of household adjustment to changes in gasoline prices.

Studies that have used disaggregate data have found gasoline demand to be
Ž .fairly inelastic. Archibald and Gillingham 1980 conducted the first major studies

of gasoline demand using disaggregate household-level data. Archibald and
Ž .Gillingham 1980 used the 1972]1973 Consumer Expenditure Survey to estimate

Ž .an overall short-run price elasticity of y0.43. Archibald and Gillingham 1981
found that roughly three-quarters of the adjustment is to miles traveled while

Ž .one-quarter is to household gasoline efficiency. Greene and Hu 1986 used
National Family Opinion Poll data from 1978 to 1981 to estimate a short-run
demand elasticity for one-vehicle households of y0.5 to y0.6, but note that their

Ž .estimates are likely to be inflated. Walls et al. 1993 used the 1990 National
Personal Transportation Survey to estimate the short-run elasticity of gasoline and

Ž .found demand slightly more price elastic y0.51 than older studies have found.
Ž .Greening et al. 1995 used the 1990 Consumer Expenditure Survey and found the

short-run elasticity for various socio-demographic groupings defined by cluster
analysis to vary from 0.00 to y0.67. In their survey of gasoline demand elasticities,
Dahl and Sterner reported the mean price elasticity for panel data studies to be
y0.52 and the mean of all studies to be y0.26 in the short-run and y0.86 in the

Ž .long-run Dahl and Sterner, 1991, p. 206.
This paper distinguishes itself from previous work in two ways. Whereas several

previous studies using disaggregate data have restricted their analysis to house-
holds which do not make changes to vehicle stock, we allow vehicle stock to change
and therefore our estimates include longer-run adjustments.1 Second, households
may be expected to respond to a price change with a complex adjustment process
combining changes in both usage of vehicle stock and the stock itself. Previous
studies which estimate demand directly may conflate the adjustments which could
be separated in a two-equation model. In addition, previous studies have not
estimated the dynamics of household response to price changes. We decompose
the demand for gasoline into a vehicle usage and a vehicle stock equation and
include lagged prices in our model so we can better analyze the composition and
dynamics of the household adjustment process. We use 9 years of a rotating panel
of US households to estimate the price elasticity of non-business gasoline demand.2

1 Ž . Ž . Ž .Archibald and Gillingham 1980, 1981 , Walls et al. 1993 , and Greening et al. 1995 restrict their
analyses to households which do not make changes to vehicle stock and, therefore define their elasticity
estimates to be short-run estimates.
2 Ž .Note, however, that our panel the Consumer Expenditure Survey is a rotating panel so that the
window for which we view household behavior is only 1 year long. This short period of observation may

Ž .limit the adjustments which we measure. However, Espey’s Espey, 1996 meta-analysis suggests that
approx. 75% of the price response occurs within 1 year. Therefore we hope to capture and analyze a
large fraction of the total adjustment to a change in the price of gasoline.
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We obtain elasticity estimates well within the range found in the literature but find
the adjustment to be neither smooth nor evenly divided between the usage of the
vehicle stock and the stock itself. Our decomposition finds that households adjust
the number of vehicle miles traveled more than household composite miles per
gallon. In addition, we find that although gasoline demand is fairly inelastic in the
year after a price change, the initial adjustment to a price rise is a rather
substantial decrease in gasoline consumption.

2. Model of gasoline demand

This paper will view gasoline in the context of household production theory. A
household receives utility from transportation services which are produced by the
household’s technology using gasoline, maintenance goods and services, and vehi-
cle stock as factor inputs. Consequently, the demand for gasoline is derived. We
model the demand for gasoline by household i in period t as:

Ž . Ž .g s g p , I ; c 1i t i t g i i t

where p is a vector of contemporaneous and lagged real prices of gasoline facedg
by household i, I is the real income of household i, and c is a vector ofi i t
household demographic characteristics.

Ž .One can decompose the household’s demand for gasoline g into the demandi t
Ž .for vehicle miles traveled VMT and the demand for household composite traveli t

Ž .efficiency measured in miles per gallon MPG using the identity g 'i t i t
VMT rMPG . Taking logs and differentiating with respect to the log of price, onei t i t
can obtain the elasticity decomposition:

Ž .h s h y h 2gyp VMTyp MPGyp

Therefore we can obtain the price elasticity of gasoline demand from the
elasticities of vehicle miles traveled and household composite miles per gallon
Ž .MPG . In this paper, we estimate the demand for non-business gasoline directly

Ž .through Eq. 1 and indirectly by estimating simultaneously the demand for vehicle
miles traveled and the demand for household composite miles per gallon. The
indirect estimation can tell a much richer story of how a household responds to
price changes.

In order to estimate gasoline demand in this indirect fashion, we develop a
Ž .model of the demand for VMT and composite MPG. Eq. 3 is a model of the

household’s use of its vehicle stock to produce household transport services.
Households choose vehicle miles traveled based on the price per mile of travel,
lagged prices of gasoline, income, the price of maintenance goods and services, and
household characteristics:
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pg t Ž .VMT s f , p , I , p ; c 3i t g i m itty s tž /MPGi t

where VMT is the vehicle miles traveled by household i in period t, MPG , is thei t i t
household’s vehicle travel efficiency in period t, p and p are contemporaryg t g tys
and lagged real prices of gasoline, p is the price of maintenance goods andmt

Ž .services in period t, and c is a vector of household characteristics. Eq. 4 is ai t
model of the determination of the household’s composite MPG. Households

Ž .choose composite MPG total milesrtotal gallons based on the price of gas,
vehicle miles traveled, income, the price of new vehicles, and household character-
istics:

Ž . Ž .MPG s f p , VMT , I , p ; c 4i t g i t i NV i tt

where p is a vector of contemporaneous and lagged prices of gas and p is theg NVt
price of new vehicles.

A household can adjust its miles traveled and composite MPG in a variety of
ways in both the short- and long-run. First, consider the choice of VMT. In the
short-run, a household can alter VMT by changing the number or the consolida-
tion of trips, while in the long-run, a household can change the distance between
its residential location and trip destinations. A household can also be expected to
make short- and long-run adjustments to composite MPG. In the short-run, a

Žhousehold can change its driving and maintenance behavior to alter MPG e.g.
. Žchange acceleration rates, highway speeds, and car service frequency Archibald

.and Gillingham, 1981 . In addition, multi-vehicle households can adjust the usage
of their current stock if the vehicles differ in efficiency rating. In the long-run, a
household can change vehicle stock in order to change composite MPG. We expect

Žh - 0 but h can be positive or negative a rise in price could reduceVMTyp MPGyp
.long trips and thus reduce MPG or consolidate short trips and increase MPG .

Finally, these adjustments are not expected to be smooth over time since a large
component of the household response is an adjustment to a durable stock.

Several previous micro-level studies have restricted their analyses to the short-run
in order to avoid more complex models involving discrete choices of vehicle
number and type. We are able to estimate elasticities which include more long-run
adjustments by including households that make changes in vehicle stock. We

Ž . Ž .perform this estimation with Eq. 3 and Eq. 4 by restricting our analysis to two
continuous dependent variables: vehicle miles traveled and household composite
MPG. This implicitly ignores vehicle stock as a discrete choice variable. Although a
more complete model would incorporate these discrete choices, we believe that our
continuous analysis is not without good foundation because many of the short-run
adjustments discussed above are continuous choices. In addition, estimating the
utilization and stock equations simultaneously will avoid the misspecification

Ž .problem described by Dubin and McFadden 1984 since unobserved variables
which affect the usage of vehicle stock may also affect the choice of stock.

Ž . Ž . Ž .In order to estimate Eq. 1 , Eq. 3 and Eq. 4 , we assume that the gasoline,
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VMT and composite MPG demand equations take a log additive functional form.
Although this functional form is somewhat restrictive, we do not believe we will

Ž .obtain biased estimates due to the results of Greene and Hu 1986 . Greene and
Hu find the optimal Box]Cox transformation to fit disaggregate gasoline demand
data and find the resulting elasticities very similar to elasticities estimated with a
log additive specification. With a log additive specification of the demand func-
tions, we can interpret the parameter estimates as elasticities.

3. Data

Ž .We use 9 years of Consumer Expenditure Survey CES data to estimate
Žnon-business gasoline demand. The Consumer Expenditure Survey US Depart-

.ment of Labor, 1980]1990 is a rotating panel which surveys a representative
sample of the US population and collects information on household consumption,
demographic characteristics, and durables ownership. The CES surveys a house-
hold for five consecutive quarters with the first interview collecting only income
and durables information. Although the CES has been conducted annually since
1980, the years for which vehicle stock and mileage data are available and reliable
are 1980]1981 and 1984]1990. In order to obtain the fuel efficiency of each

Ž .vehicle in a household, we merge on EPA US Department of Energy, 1996 data
of efficiency ratings in lab tests. We merge on the efficiency numbers using a
variety of criteria including make, model, year, type of vehicle, number of cylinders
and type of transmission. Then we adjust the efficiency ratings according to annual

Ž .miles traveled according to Mintz et al. 1993 who found correction factors to the
laboratory estimates based upon driver behavior. We restrict our analysis to
vehicles which traveled over 100 miles in a quarter.

We are then able to calculate two of the variables we require for the analysis.
The number of non-business gallons used by each vehicle is the number of

Ž .non-business miles provided in the CES divided by the vehicle fuel efficiency.
Total household non-business gallons is the sum of gallons across all vehicles in the
household. We calculate each household’s non-business composite MPG as the
sum of non-business miles across all vehicles in a household divided by the sum of
non-business gallons. If a household is missing data for a vehicle which traveled
over 100 miles in the quarter, then the household is excluded from the analysis.

ŽOur price data is from the Bureau of Labor Statistics US Department of Labor,
.1979]1990 Average Price data. We use BLS monthly average nominal prices of all

types of gasoline for various regions and population sizes. Then we deflate by the
CPI for all items, average over the months in each rotating quarter, and merge on
the household data by a combination of region and size criteria. In addition, we use
BLS price indexes for maintenance and new cars as instruments in the two-equa-
tion model.

After merging all the required data and performing the calculations to obtain
the variables needed for the analysis, 52% of the original CES household inter-
views have complete data. In order to roughly test for selection, we compare the
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means of our sample across all the years to the means from CES tables for 1987.
Because we do not observe significant differences in the means, the remaining
households are ignored without any test for selection bias. Our total analysis
dataset is an unbalanced sample of 95 809 quarterly interviews across 37 046
households.

4. Empirical results

Ž .Both the direct estimation of gasoline demand using Eq. 1 and the indirect
Ž . Ž .estimation using Eq. 3 and Eq. 4 leave open a variety of possible model

specifications. Since the data is a panel, we analyze several specifications for
individual household effects. In addition, we consider a variety of lag structures for
gas prices.

4.1. Indï idual household effects

We experiment with specifications for individual household effects on the direct
Ž .one-equation model 1 . First, we assume no individual effects and estimate a

pooled model. Using contemporaneous price and lags ranging from zero to four
quarters, we estimate impact elasticities ranging from y0.77 to y0.83 with total
elasticities ranging from y0.30 to y0.39. We find the large impact elasticity to be
particularly interesting. When we include only contemporary andror 1-year lagged
prices as other studies have done, we obtain total elasticity estimates in the range
of y0.35. Yet when we add various quarterly lagged prices which other studies
have not done, we find that the impact effect in the current quarter is much larger.
These results would be consistent with consumers rescheduling activities across
seasons, such as postponing vacation driving when gas prices are high.

We also estimate several random and fixed effects models but we obtain
unsatisfactory results. We model several random effects specifications and obtain
fairly stable price elasticity estimates which lie within the range found in the
literature. However, for all specifications, a Hausman test rejects that the random
effects are orthogonal to the regressors so that our parameter estimates may be
inconsistent.

We also assume that individual household effects can be captured by a separate
constant for each household, and analyze a fixed effects specification. Depending
upon the number of lagged prices included, our estimated price elasticities range
from y0.44 to y1.33, with most estimating elastic demand. An F-test rejects the
null hypothesis that the individual intercept terms are equal across households.
Therefore the specification tests tend to lead us to prefer the fixed effects model.
Thus, we must ask whether elastic demand is plausible.3 On the one hand, we do
believe that the within-household variation is the best method to estimate price

3Note that elastic demand would be consistent with a market in which suppliers have market power.
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elasticity since the cross-sectional variation is more likely to introduce measure-
ment errors which could bias the estimates downward. Nevertheless, we tend not to
believe the results from the fixed effects specification. The elasticity estimates are
very sensitive to the number of lags whereas the pooled estimates are not
sensitive.4 Although we do not have an explanation for the high elasticity estimates
under fixed effects, we note that it is not uncommon for random and fixed effects
models to lead to significantly different parameter estimates when T is small and N

Ž .is large Hsiao, 1986, p. 41 . Since we find the fixed and random effects specifica-
tions unsatisfactory, we will base our analysis in the remaining sections of the
paper upon the results from the pooled model. Estimates for the four lag specifica-
tion of the pooled, fixed effects, and random effects models are presented
in Table 1.

4.2. Lag structure

Our most general model of the lag structure would be to place no restrictions on
the parameters and include up to four quarters of lagged prices. The results from
this general pooled model are reported in column 1 of Table 1. The estimated
dynamics of the adjustment process from this unrestricted specification can be seen
in Fig. 1. The parameter estimates seemingly suggest that households do not adjust
smoothly to price changes. However, this unexplainable waviness is likely due to
strong collinearity rather than sporadic adjustment by households. Therefore this
general model may estimate more of the quixotic nature of the data than the actual
adjustment process. As a result, we impose restrictions on parameters to purge the
estimates of the wavy patterns of lagged parameter estimates, but remain cautious
not to impose invalid restrictions on the underlying behavioral model. As our
criteria, we seek restrictions which avoid the unexplainable waviness, but do not

Žchange the estimate of the total adjustment the sum of the price parameter
.estimates .

We consider several possible sets of restrictions. Previous conservation studies
have suggested that demand for a variable input may have a large negative impact
multiplier followed by a snap-back effect as households adjust durable stock.5 To
allow for this possibility, we allow the impact parameter to be free, but require that

Ž . Ž .lagged parameters or the snap-back effect lie along a line first-order polynomial .
Also, we estimate a specification where the impact parameter is free and the four
lagged parameters are required to be equal. Finally, studies have modeled the
lagged coefficients as lying along an inverted-V. Accordingly, we require all

Ž .parameter estimates contemporary as well as lagged to lie along a second-order
polynomial.

4One plausible explanation is that the fixed effects estimates are biased due to the omitted time
invariant covariates. However, we run the pooled model excluding the variables with no within
household variation and obtain elasticity estimates very close to the original pooled results.
5 Ž .An example of this effect applied to automobile stock is Greene 1992 .
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The OLS results from these three specifications of the one-equation model are
shown in Table 2 and Fig. 1. All three models clear up much of the waviness of the
unrestricted parameter estimates without changing the estimates of the total

Table 1
ŽSingle equation model with four lagged prices regression coefficients with standard errors in

.parentheses

Variable Variable definition Regression

Pooled Fixed effects Random effects

lngas Log of contemporary real gas price y0.826 y1.283 y1.006
Ž . Ž . Ž .0.054 0.053 0.042

lngas11 Log of 1 qtr. lagged real gas price 0.094 y0.106 0.010
Ž . Ž . Ž .0.086 0.063 0.060

lngas12 Log of 2 qtr. lagged real gas price 1.577 1.799 1.781
Ž . Ž . Ž .0.089 0.064 0.061

lngas13 Log of 3 qtr. lagged real gas price y2.017 y2.218 y2.113
Ž . Ž . Ž .0.085 0.062 0.059

lngas14 Log of 4 qtr. lagged real gas price 0.843 0.743 0.881
Ž . Ž . Ž .0.054 0.052 0.043

ln incatx Log of household income after tax 0.023 0.000 0.015]
Ž . Ž . Ž .0.001 0.002 0.001

childu18 No. of children under 18 in household y0.014 y0.022 y0.016
Ž . Ž . Ž .0.003 0.016 0.005

no earnr No. of earners in household 0.249 0.063 0.191]
Ž . Ž . Ž .0.005 0.010 0.006

urban 1 s Urban household y0.208 y0.207
Ž . Ž .0.011 0.016

refwhite 1 s Reference person white 0.257 0.266
Ž . Ž .0.011 0.016

ref fem 1 s Reference person female y0.340 y0.333]
Ž . Ž .0.008 0.011

ref hs 1 s Reference person high school educ. 0.132 0.129]
Ž . Ž .0.010 0.014

ref scol 1 s Reference person some college 0.201 0.193]
Ž . Ž .0.011 0.015

ref col 1 s Reference person college grad. 0.222 0.219]
Ž . Ž .0.012 0.017

ref grad 1 s Reference person beyond college educ. 0.187 0.196]
Ž . Ž .0.013 0.018

totwkwrk No. of weeks worked by head and spouse 0.001 0.001 0.001
Ž . Ž . Ž .0.000 0.000 0.000

age ref Age of reference person 0.042 0.022 0.045]
Ž . Ž . Ž .0.001 0.011 0.002

agerefsq Age squared of reference person 0.000 0.000 y0.001
Ž . Ž . Ž .0.000 0.000 0.000

retired 1 s Member of household is retired 0.275 0.077 0.212
Ž . Ž . Ž .0.014 0.025 0.017

intercept 3.248 3.299
Ž . Ž .0.035 0.046
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Ž .Table 1 Continued

Variable Variable definition Regression

Pooled Fixed effects Random effects

2R 0.151 0.785 0.641
Sum of price

coefficients
Želasticity

.estimate y0.329 y1.065 y0.477

Sample size: 95 809.
F-test on pooled vs. fixed effects: F s 4.90; P ) F s 0.0000.37 045,58 750

2 Ž .Hausman test: x 18 s 668.78; P s 0.0000.

effect.6 The snap-back model suggests a large impact effect followed by a snap-back
which peaks after one quarter and then declines. Both the second-order poly-
nomial and constant lagged coefficients models suggest a smaller negative impact
effect followed a slightly positive lagged effect. Under these two models, however,
the impact effect appears to be biased. As a result, we prefer the first-order
snap-back model. Therefore we conclude from our one-equation model that the
impact effect of a gas price change is significantly larger than the total effect. A 1%
rise in the price of gasoline will decrease consumption by 0.76% in the current
quarter, but then consumption will snap-back in the following quarter by 0.40%
and be followed by progressively smaller rises in consumption in subsequent
quarters. The overall effect of a 1% price rise in the year following the price
change is a 0.34% fall in consumption.

4.3. Two-equation model

We now apply these model specifications to the two-equation model in order to
tell a richer story about the household’s adjustment process. The two-equation
model allows us to decompose the adjustment from the one-equation model into
the adjustment of the number of miles traveled and the adjustment of the

Ž .household’s composite MPG. Using two-stage least squares, we estimate Eq. 3
Ž .and Eq. 4 with four unrestricted lagged prices and estimate a slightly higher

Ž .gasoline price elasticity y0.47 than in the one-equation model. Regression
results are reported in the first two columns of Table 3. We find that the elasticity
of VMT with respect to the price of gasoline is y0.69 while the elasticity of
composite MPG is y0.22. This negative elasticity of composite MPG would be
consistent with households reducing the number of high efficiency miles such as
vacation trips. The larger elasticity of VMT suggests that households make the

6Although each of these sets of restrictions are rejected at all standard testing levels, we believe such
restrictions do not impose invalid restrictions on the behavioral model and are necessary to deal with
the collinearity.
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Fig. 1. One-equation model with four lagged prices: lagged coefficient estimates under the four
different lag specifications for the one-equation model of gasoline demand with total elasticity estimates
shown in parentheses.

largest adjustment within 1 year of a price change by reducing miles traveled.
However, the resulting decrease in gasoline consumption is mitigated by a small
reduction in household composite MPG.

Table 2
ŽSingle equation pooled model with four lagged prices price coefficients with standard errors in

.parentheses

Regression

Unrestricted Snap-back 2nd order Lagged
1st order polynomial coefficients

equal

lngas y0.826 y0.764 y0.464 y0.485
Ž . Ž . Ž . Ž .0.054 0.046 0.036 0.035

lngas11 0.094 0.403 0.011 0.045
Ž . Ž . Ž . Ž .0.086 0.039 0.017 0.009

lngas12 1.577 0.204 0.211 0.045
Ž . Ž . Ž . Ž .0.089 0.019 0.029 0.009

lngas13 y2.017 0.006 0.136 0.045
Ž . Ž . Ž . Ž .0.085 0.010 0.017 0.009

lngas14 0.843 y0.192 y0.212 0.045
Ž . Ž . Ž . Ž .0.054 0.027 0.036 0.009

Elasticity
estimate y0.33 y0.34 y0.32 y0.30
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Table 3
ŽTwo-equation pooled model with four lagged prices regression coefficients with standard errors in

.parentheses

Variable Variable definition Unrestricted model Snap-back model

Ž . Ž . Ž . Ž .Eq. 3 Eq. 4 Eq. 3 Eq. 4
Ž . Ž . Ž . Ž .LN VMT LN MPG LN VMT LN MPG

lngas Log of contemporary real gas price y0.859 y0.131 y0.869 y0.112
Ž . Ž . Ž . Ž .0.056 0.110 0.050 0.013

lngas11 Log of 1 qtr. lagged real gas price 0.010 y0.041 0.327 y0.018
Ž . Ž . Ž . Ž .0.088 0.021 0.041 0.010

Ž .lngas12 Log of 2 qtr. lagged real gas price 1.528 0.042 0.114 y 0.026
Ž . Ž . Ž . Ž .0.091 0.190 0.022 0.005

lngas13 Log of 3 qtr. lagged real gas price y2.009 y0.095 y0.099 y0.033
Ž . Ž . Ž . Ž .0.086 0.252 0.016 0.002

lngas14 Log of 4 qtr. lagged real gas price 0.727 y0.023 y0.312 y0.040
Ž . Ž . Ž . Ž .0.060 0.095 0.031 0.007

ln mpg Log of non-business miles per gallon 0.409 y0.403]
Ž . Ž .0.325 0.330

ln vmt Log of non-business VMT y0.047 y0.016]
Ž . Ž .0.125 0.010

ln incatx Log of household income after tax 0.025 0.003 0.026 0.002]
Ž . Ž . Ž . Ž .0.001 0.003 0.001 0.000

pr main Price index of maintenance 0.004 0.005]
Ž . Ž .0.002 0.002

pr new Price index of new cars y0.005 y0.005]
Ž . Ž .0.000 0.000

chidu18 No. of children under 18 in y0.027 y0.024 y0.045 y0.023
Ž . Ž . Ž . Ž .household 0.008 0.005 0.008 0.001

no earnr No. of earners in household 0.256 0.025 0.266 0.017]
Ž . Ž . Ž . Ž .0.007 0.033 0.068 0.003

urban 1 s Urban household y0.194 0.016 y0.173 0.022
Ž . Ž . Ž . Ž .0.014 0.023 0.014 0.003

refwhite 1 s Reference person white 0.261 0.016 0.265 0.008
Ž . Ž . Ž . Ž .0.011 0.033 0.011 0.004

ref fem 1 s Reference person female y0.311 0.034 y0.272 0.043]
Ž . Ž . Ž . Ž .0.018 0.037 0.018 0.003

ref hs 1 s Reference person high school 0.151 0.038 0.175 0.033]
Ž . Ž . Ž . Ž .educ. 0.014 0.021 0.014 0.003

ref scol 1 s Reference person some college 0.246 0.086 0.304 0.077]
Ž . Ž . Ž . Ž .educ. 0.026 0.035 0.027 0.004

ref col 1 s Reference person college grad 0.293 0.131 0.386 0.121]
Ž . Ž . Ž . Ž .0.040 0.043 0.04 0.004

ref grad 1 s Reference person beyond college 0.275 0.163 0.394 0.152]
Ž . Ž . Ž . Ž .0.050 0.042 0.050 0.004

totwkwrk No. of weeks worked by head and 0.001 0.000 0.001 0.000
Ž . Ž . Ž . Ž .spouse 0.000 0.000 0.000 0.000

age ref Age of reference person 0.039 y0.005 0.033 y0.006]
Ž . Ž . Ž . Ž .0.003 0.005 0.003 0.000
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Ž .Table 3 Continued

Variable Variable definition Unrestricted model Snap-back model

Ž . Ž . Ž . Ž .Eq. 3 Eq. 4 Eq. 3 Eq. 4
Ž . Ž . Ž . Ž .LN VMT LN MPG LN VMT LN MPG

agerefsq Age squared of reference person 0.000 0.000 0.000 0.000
Ž . Ž . Ž . Ž .0.000 0.000 0.000 0.000

retired 1 s Member of household is retired 0.286 0.026 0.296 0.017
Ž . Ž . Ž . Ž .0.015 0.037 0.015 0.004

intercept 4.588 3.826 6.959 3.632
Ž . Ž . Ž . Ž .1.143 0.776 1.163 0.065

2R 0.164 0.110 0.154 0.117

Elasticity y0.69 y0.22 y0.75 y0.22

Unfortunately, collinearity again gives us uninterpretable waves which we would
Ž .like to purge from our estimates see Fig. 2 . When we apply the first-order

snap-back, second-order polynomial, and constant lagged coefficients model to the
Žtwo equations, we smooth the parameter estimates but obtain slightly larger in

. Ž .absolute value gasoline price elasticities see Figs. 3]5 . When we estimate the
snap-back and second-order polynomial models, we obtain VMT elasticities of

Fig. 2. Two-equation model with four unrestricted lags: elasticity estimates of VMT, composite MPG,
and gasoline demand for each lagged price with total elasticity shown in parentheses.
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Fig. 3. Two-equation model with four lags: snap back first-order. Elasticity estimates of VMT,
composite MPG, and gasoline demand for each lagged price with total elasticity in parentheses.

approx. y0.75 and MPG elasticities of y0.22 for a total gasoline elasticity approx.
y0.54. The snap-back model again finds the larger response in VMT with a

Ž .one-quarter snap-back in VMT see Fig. 3 . The VMT snap-back declines after the
first quarter and eventually becomes negative. As for the constant lagged coeffi-
cients model, the initial effect is larger for both VMT and MPG and is followed by

Fig. 4. Two-equation model with four lags: second order polynomial. Elasticity estimates of VMT,
composite MPG, and gasoline demand for each lagged price with total elasticity shown in parentheses.
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Fig. 5. Two-equation model with four lags: lagged coefficients equal. Elasticity estimates of VMT,
composite MPG, and gasoline demand for each lagged price with total elasticity shown in parentheses.

Ž .smaller but still negative lagged effects see Fig. 5 . Again, we prefer the snap-back
model because it appears not to significantly bias the impact effect. Qualitatively it
suggests that households make the largest adjustment to vehicle miles traveled
rather than to household MPG. MPG has a negative elasticity which is consistent
with households primarily reducing the driving of more fuel efficient miles such as
long trips. In addition, the snap-back effect is largest in the quarter following a
price change.

5. Conclusions

This paper estimates household adjustment to changes in the real price of
non-business gasoline. We estimate the demand for gasoline with a one-equation
model, and then decompose the demand for gasoline into the demand for vehicle
miles traveled and the demand for household fuel efficiency measured in miles per
gallon.

Our one-equation pooled model yields gasoline price elasticity estimates which
are consistent with the literature and support the claim that gasoline demand is
relatively inelastic in the year following a price change. The interesting result is
that the impact in the current quarter is much larger than previous studies have
estimated. When we use contemporaneous prices and 1-year lags as other studies
have used, we obtain elasticity estimates in the range of y0.35, which is consistent
with the literature. However, when we uses various specifications of quarterly
lagged prices, we find that the impact elasticity is consistently approx. y0.8.
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Our two-equation results suggest that households reduce both vehicle miles
traveled and household composite MPG in the year after a price change. The net
adjustment to miles traveled is 3.5 times larger than the net adjustment to MPG.
Our finding that h - 0 might suggest that households adjust compositeMPGyp
MPG more by reducing high efficiency miles than by altering driving and mainte-
nance behavior or by changing household vehicle stock. In the snap-back model,
our preferred model of the lag structure, we find that both VMT and household
MPG fall in the quarter of a price rise. However, in subsequent quarters, VMT
snaps back while household MPG continues to gradually decline.

This paper offers insights into the dynamics and composition of household
response to changes in the real price of gasoline. As in previous studies, gasoline
demand is estimated to be relatively inelastic. However, we find that in the year
following a price change, the adjustment is neither smooth nor evenly divided
between adjustments to vehicle miles traveled and adjustments to household
composite miles per gallon.
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